CNN Based Adversarial Embedding with Minimum Alteration for Image Steganography

نویسندگان

  • Weixuan Tang
  • Bin Li
  • Shunquan Tan
  • Mauro Barni
  • Jiwu Huang
چکیده

Historically, steganographic schemes were designed in a way to preserve image statistics or steganalytic features. Since most of the state-of-the-art steganalytic methods employ a machine learning (ML) based classifier, it is reasonable to consider countering steganalysis by trying to fool the ML classifiers. However, simply applying perturbations on stego images as adversarial examples may lead to the failure of data extraction and introduce unexpected artefacts detectable by other classifiers. In this paper, we present a steganographic scheme with a novel operation called adversarial embedding, which achieves the goal of hiding a stego message while at the same time fooling a convolutional neural network (CNN) based steganalyzer. The proposed method works under the conventional framework of distortion minimization. Adversarial embedding is achieved by adjusting the costs of image element modifications according to the gradients backpropagated from the CNN classifier targeted by the attack. Therefore, modification direction has a higher probability to be the same as the sign of the gradient. In this way, the so called adversarial stego images are generated. Experiments demonstrate that the proposed steganographic scheme is secure against the targeted adversary-unaware steganalyzer. In addition, it deteriorates the performance of other adversary-aware steganalyzers opening the way to a new class of modern steganographic schemes capable to overcome powerful CNN-based steganalysis. Index Terms Steganography, steganalysis, adversarial machine learning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steganography Scheme Based on Reed-Muller Code with Improving Payload and Ability to Retrieval of Destroyed Data for Digital Images

In this paper, a new steganography scheme with high embedding payload and good visual quality is presented. Before embedding process, secret information is encoded as block using Reed-Muller error correction code. After data encoding and embedding into the low-order bits of host image, modulus function is used to increase visual quality of stego image. Since the proposed method is able to embed...

متن کامل

Singular Value Decomposition based Steganography Technique for JPEG2000 Compressed Images

In this paper, a steganography technique for JPEG2000 compressed images using singular value decomposition in wavelet transform domain is proposed. In this technique, DWT is applied on the cover image to get wavelet coefficients and SVD is applied on these wavelet coefficients to get the singular values. Then secret data is embedded into these singular values using scaling factor. Different com...

متن کامل

Generative Adversarial Networks for Image Steganography

Steganography is collection of methods to hide secret information (“payload”) within non-secret information (“container”). Its counterpart, Steganalysis, is the practice of determining if a message contains a hidden payload, and recovering it if possible. Presence of hidden payloads is typically detected by a binary classifier. In the present study, we propose a new model for generating image-l...

متن کامل

Secret Information Steganography Using LSB Insertion Methodwithout Bit Layout Section with Increasing Substitution Rate and High Reliability

In this paper, a faster method for embedding cryptographic information in the image ispresented by expressing the concept of latent prints (Steganography). Data is encrypted bytwo methods before embedding to increase reliability. Then they are embedded into the imageby a button, a method has been expressed to reduce potential noise impact on the wayinformation is encoded.

متن کامل

Image Steganalysis Based on Co-Occurrences of Integer Wavelet Coefficients

We present a steganalysis scheme for LSB matching steganography based on feature vectors extracted from integer wavelet transform (IWT). In integer wavelet decomposition of an image, the coefficients will be integer, so we can calculate co-occurrence matrix of them without rounding the coefficients. Before calculation of co-occurrence matrices, we clip some of the most significant bitplanes of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018